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Abstract 
 

The paper presents the results of studying the nickel electroplating process in the presence of nanodiamond additives.  
It shows that the use of detonation nanodiamonds (DND) and diamond explosive charge (DC) obtained by explosion of tetryl 
(N-methyl-2,4,6-trinitrophenylnitramine) can significantly improve the physicochemical properties of nickel platings: increase 
the microhardness up to 60 % (up to 448 kgf/mm2 – 4393 MPa), obtain a non-porous nickel plaiting and reduce wear  
up to 28 times. The most effective was the use of non-expensive nanodiamonds, but cheap diamond charge obtained by the 
explosion of tetrile. 
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Introduction 
 

Chromium and nickel electroplaitings are quite 
widespread in mechanical engineering. However, the 
widespread use of nickel plaiting is hindered by low 
wear and corrosion resistance.  

The study [1] showed that to achieve high 
microhardness, wear and corrosion resistance, it is 
necessary to apply the plaiting from electrolytes 
containing additives of nanomaterials.  

It is known that DND was used under the patent 
[2]. The disadvantages of this method include the high 
volume of labor costs for preparing the DND 
suspension in the electrolyte (up to 50 hours at a 
temperature of 55 °C); the need to introduce a 
suspension of nanomaterials into the electrolyte in 
equal small portions; low stability of nanodiamonds in 
the electrolyte; low quality indicators of composite 
nickel plaiting.  

The composite nickel plaiting with a 
microhardness of 292–374 kgf/mm2 (2864–3668 MPa) 
was obtained from an electrolyte [3] containing salts of 

nickel sulfates and DND with a concentration  
of 2 to 42 g/L at a high current density of 15 A/dm2.  
The disadvantages of this method include the high 
energy consumption, high consumption of 
nanodiamonds, as well as complex operations for the 
preparation of nanodiamonds (treatment of DND with 
acids, alkalis, and disintegrator) to the introduction into 
the electrolyte with a modest result. 

In [4], when applying Ni-DND plaiting from the 
classical Watts electrolyte, the authors managed to 
increase the microhardness from 242 to 412 kgf/mm2 
(from 2373 to 4040 MPa), while the concentration of 
DND-TAN was 2 g/L, and the current density was  
1 or 2 A/dm2. The wear of such a plaiting dropped by 
2–4 times. DND was obtained by the explosion of an 
alloy of TNT with hexogen in a 50/50 ratio.  

In [5], the effect of a diamond charge, an 
intermediate product of DND synthesis, also obtained 
by the explosion of an alloy of TNT with hexogen, on 
the nickel plaiting deposition process and its results 
was studied. The classical Watts electrolyte was also 
used.  
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Even more significant results were obtained: at a 

DC content of 5 g/L and a current density, the 
microhardness increased from 280 to 520 kgf/mm2 
(from 2746 to 5100 MPa), the wear of the plaiting fell 
from ~ 23 % to ~ 1 %, i.e. the wear resistance increased 
by ~ 23 times, and the porosity of the Ni-AL plaiting 
decreased from ~ 17 % to 2.5 %. 

The aim of this work is to obtain low-porosity and 
wear-resistant nickel platings by adding detonation 
nanodiamonds and diamond charge obtained by the 
explosion of tetryl (N-methyl-2,4,6-trinitro-
phenylnitramine) to the electrolyte. 

 
Experimental part 

 

Obtaining nanodiamonds and electrolysis mode 
 

A diamond charge was obtained by detonating 
charges from an individual explosive (tetril)  
in an Alfa-2M explosive chamber with a capacity  
of 2.14 m3. Detonation nanodiamonds (DND) were 
obtained from DC by purifying it with a mixture  
of 10 % wt. HNO3 with 10 % wt. NH4NO3 [6].  

The object of the research was an electrolyte close 
in composition to Watts’s electrolyte and contained:  

− heptahydrate nickel sulfate – 205–215 g/l;  
− sodium chloride – 11–16 g/l;  
− boric acid – 21–26 g/l;  
− pH – 4.1–4.4;  
− electrolysis temperature, average 19 °C;  
− current density – 0.6–2.1 A/dm2.  
The working electrode was a nickel-plated copper 

plate. The auxiliary electrodes were pure nickel plates. 
Polarization curves were recorded in potentiostatic 
mode. Each experiment was repeated 2 or 3 times.  

 
Determination of corrosion currents 

 

An IPC ProMF potentiostat was used to determine 
the corrosion currents. Corrosion curves were recorded 
in an aqueous 3 % NaCl solution in a potentiostatic 
mode (1 mV/s). Cathodic curves were obtained in the 
range of –1780 to 2110 mV and anodic curves were 
obtained in the range of –1780 to 1710 mV.  

 
Procedure for determining corrosion resistance 

 

A KKI 1 salt spray chamber was used.  
For conducting the tests, a sodium chloride 

solution with a concentration of (50 ± 5) g/dm3,  
pH 6.5–7.2 was used according to GOST 9.308–85.  

While testing, the samples were placed in a KKI 1 
chamber heated to a temperature of (35 ± 2) °C and 
exposed to salt fog. During the tests, the solution was 
sprayed continuously. The average filling rate of the 

solution in each collector for 24 h was 1–2 cm3/h.  
At the end of the tests, the samples were removed from 
the chamber. The assessment of corrosion damage was 
carried out in accordance with GOST 9.311–87 and 
GOST 9.908–85.  
 

Methods for determining microhardness 
 

The microhardness tester PMT-3 was used.  
The microhardness measurement was based on the 

method of static indentation of a diamond pyramid 
under a low load (20 g) into the plaiting under study. 
The measurements were carried out in accordance with 
GOST 9.450–76. The resulting rhombic imprint  
(on the thin section of the plaiting) was observed under 
a microscope. The average value of the imprint 
diagonal was taken from 9 to 13 measurements on each 
sample.  

The microhardness value (MPa) was calculated by 
the formula:  

( )23.0

8.91854

d

P
H

⋅
=μ ,                        (1) 

 

where P is the load, g; d is average diagonal of the 
print, μm.  

In order to measure the microhardness, plaitings 
with a thickness of 15 μm were applied to the steel 
base, which exceeds the minimum thickness of 
galvanic deposits in the case when the base is softer 
than the plaiting. The average microhardness value was 
obtained from five experiments. The measurement error 
was ± 6 %. 

 
 Procedure for determining porosity 

 

The potentiostat IPC ProMF was used.  
The porosity in this work was measured by the 

method of anodic polarization curves in a 0.1 N solution 
of potassium thiocyanate on a steel sample with a 
nickel plaiting. On the recorded polarization curves, we 
chose the potential at which the steel dissolves and the 
nickel plaiting was in a passive state. At this potential, 
current-time curves were recorded. The pore area in the 
plaiting was calculated using the formula:  

 

Spore = ist + Ni/ist,                        (2) 
 

where ist + Ni is constant anode current established at 
the selected potential on steel with nickel plating, 
mA/cm2; ist is constant anode current established at the 
selected potential on steel, mA/cm2.  

The thickness of the investigated plaiting was  
5 μm. The average porosity value for each type of 
plaiting was obtained from 3 to 5 experiments.  
The measurement error was ± 5 %.  
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Table 1 

Influence of temperature on the electrical conductivity of electrolytes χ, (cm/cm2)·102 

 

Nanodiamond additive, g/l 
Temperature of electrolyte, °С 

50 ± 1 40 ± 1 30 ± 1 20 ± 1 

– 8.13 7.21 6.06 4.82 

DND-TAN (Т), 1.0 8.23 7.50 6.20 5.07 

DND-TAN (Т), 2.0 8.62 7.85 6.61 5.19 

DND-TAN (Т), 5.0 8.58 7.93 6.66 5.62 

DC (Т), 1.0 11.47 9.97 8.88 7.50 

DC (Т), 2.0 11.39 10.03 8.92 7.40 

DC (Т), 5.0 11.88 10.33 9.09 7.80 
 

The polarizability ∆Е/∆ik was determined from the 
corresponding polarization curves, and the electrical 
conductivity of the electrolyte χ was measured using  
a conductometer. The same electrolyte was chosen as 
the basic composition of the electrolyte, while the 
concentration of additives in the electrolyte was 
insignificant, therefore, most likely, it was the 
polarizability value that would have the greatest effect 
on the value of G. Initially, the electrical conductivity 
of the electrolyte with DND-TAN (T) and DC (T) was 
determined.  

It is known that electrolytes for nickel plating have 
poor scattering ability, and the electrical conductivity 
of the electrolyte increases G. Table 2 shows that the 
presence of DC (T) increases the electrical conductivity 
by ~ 1.5 times, which is associated with the presence of 
graphite-like components in the DC (T). Therefore,  
DC (T) can have a significant effect not only on the  
G-factor, but also on the properties of the applied 
plaiting.  

Table 3 provides an estimate of the G-factor for 
nickel electrolytes. The addition of DNA-TAN (T) at  
a concentration of 5 g/l increases the G-factor by  
~1.4 times. However, the addition of DC (T) at only  
2 g/l increases the G-factor by ~1.96 times. 

 
Nickel current output 

 

Nickel current efficiency is an important 
characteristic of nickel plating electrolyte (Table 4). 
Earlier it was shown that the use of DC (T) increases 
the overpotential of hydrogen evolution and thereby 
increases the nickel current efficiency as the 
concentration of DC (T) increases up to 97–99 %. 
However, the use of DND-TAN (T) does not allow 
increasing the current efficiency of nickel: it remains 
within 91–93 %, which agrees with the hydrogen 
curves for electrolytes both without this additive and 
with it.  

Thus, when using DC (T), we can raise the nickel 
current output to 97–99 % (maximum value).   

 
 

Table 2 
Influence of DND-TAN (T) and DC (T) concentration  

on the electrolyte conductivity χ (cm/cm)·102 from concentration 
 

Nanodiamond additive 
The amount of nanodiamond additives, g/l 

– 1.1 2.1 5.2 

DND-TAN (Т) 4.882 5.056 5.181 5.618 

DC (Т) 4.882 7.304 7.497 7.798 
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Table 3 

Criterion of electrochemical similarity for electrolyte with nanodiamond additives, ∆ik=0,01 А/cm2 

 

Additive content  
in nickel electrolyte, g/l ∆Е, В 

Electrode 
polarizability  

∆Е/∆ik, Ohm·cm2 

Electrical 
conductivity  

of the solution χ, 
(cm/cm2) · 102 

Coefficient  
of electrochemical similarity 

G = χ · ∆Е/∆ik, cm 

– 0.051 4.882  24,0 
DND-TAN (Т) – 1.0 0.051 5.056 5.1 24.2 
DND-TAN (Т) – 2.0 0.049 5.181 4.9 25.2 
DND-TAN (Т) – 5.0 0.059 5.618 5.9 33.4 

DC (Т) – 1.0 0.056 7.497 5.6 42.1 
DC (Т) – 2.0 0.066 7.304 6.6 47.3 
DC (Т) – 5.0 0.062 7.798 6.2 48.2 

 
Table 4 

Nickel output (with DC and DND) by current 
 

DC  
and DND-TAN (Т) 

content, g/l 

ik, А/dm2 

1.1 1.3 1.6 1.8 

DC 
– 93 94 92 92 

1.1 95 96 96 96 
1.6 93 92 95 95 
2.1 99 94 95 93 
5.2 97 100 95 91 

DND-TAN 
– 93 94 92 92 

1.1 92 91 93 91 
2.1 93 91 91 92 
5.2 91 92 92 91 

 
 Microhardness of nickel-diamond plaiting 

 

During electrochemical deposition, DND-TAN (T) 
and DC (T) particles are embedded in the crystal 
structure of the plaiting forming dislocations in the 
deposit and changing the strength properties of nickel. 
In addition, DND-TAN (T) and DC (T) particles 
embedded in the plaiting are microbarriers when 
microcracks appear which also strengthens the nickel 
plaiting. In the previous studies it was shown that DND 
and DC have surface-active properties which contributes 
to the decrease in the grain of the nickel plaiting.  

Table 5 shows that the use of DC (T) and DND-
TAN (T) leads to the significant increase in the 
microhardness of the nickel plaiting.  

Table 5 
Microhardness of plaiting, MPa 

 

Additive 
Content  

of electrolyte 
additives, g/l 

ik, А/dm2 

1.1 2.1 

– – 2736 2324 

DC (Т) 
1.1 4393 3119 
2.1 3472 3481 
5.2 3893 3226 

DND-TAN (Т) 
1.1 3746 3344 
2.1 3746 3472 
5.2 3893 3472 

 
The introduction of diamond additives increases 

the microhardness of the nickel plaiting in comparison 
with the nickel plaiting without nanodiamond additives. 
The difference between the effect on the microhardness 
of DND-TAN (T) and DC (T) is small: in the first case, 
the increase in microhardness is 40–48 %, and in the 
case of using a tetrile mixture it is 41–43 %. However, 
for nickel plating, the microhardness is only  
a preliminary approximate value for assessing the 
physicochemical properties. The wear resistance and 
corrosion resistance of the plaiting are of paramount 
importance.  
 

Wear resistance of the nickel plating 
 

Tribochemical processes are very complex and in 
this work we consider only the resultant abrasion of 
samples with pure nickel and nickel-diamond plating. 
The wear of the plating during abrasion was determined 
by weighing, and the results are shown in Figs. 1 and 2. 
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Fig. 6. Wear diagram of nickel electrolyte plating  

with DND-TAN (Т), ik additive 1,1 А/dm2 
 

Fig. 7. Wear diagram of the deposit samples  
of a nickel electrolyte with the DC addition,  

current density 1А/dm2 
 

Since the DC (T) contains a significant amount 
(62 % wt.) of diamond nanocrystals, and DND-TAN (T) 
consists almost entirely of DND, the latter are 
embedded in the nickel plating and create a 
composition that is sufficiently resistant to abrasion.  
At the same time, DC (T) contains 38 % wt. graphite-
like structures. Thus, getting into the plating, 
nanographite significantly reduces the coefficient of 
friction and the combined action of DND and 
nanographite reduces wear by ~ 28 times, but the use of 
individual DND-TAN (T) leads to a decrease in wear 
only by ~ 6 times.  

 
Porosity of the nickel-diamond plating 

 

Obtaining a non-porous nickel plating is critical. 
As a rule, electrochemical nickel plating is almost 
always porous. At the same time it is a cathode plating 
and can protect the matrix from possible corrosion only 
in the absence of pores. Studies of the porosity of the 
platings were carried out by obtaining anodic 
polarization curves (current-time).  

 
Porosity of Ni-DC (T) platings 

 

The current-time curves for a plating obtained 
from a nickel electrolyte with different concentrations 
of DC (T) are located in the region of very low current 
loads, and in the presence of DC (T), the curves are 
located significantly lower than the curve obtained 
from an electrolyte without additives, which indicates a 
decrease in porosity.  

Table 6 shows the calculation of the pore area for 
the deposition of nickel platings. Table 6 shows that the 
minimum porosity is available for the nickel plating at 
a current density of 1.1 A/dm2 and DC (T) 
concentration in the electrolyte of 1.1–1.6 g/l.  
It is 515 times less than that of the plating without 
additives. At the same time, nickel platings obtained at 
DC (T) concentration in the electrolyte of 2.1 g/l and a 
current density of 1.1–1.6 A/dm2 have quite acceptable 
porosity.  

Table 6 
 

Pore area of nickel platings  
(electrolyte with DC (T)) 

 

Plating pore area with DC, % 

Content  
of DC (Т)  

in electrolyte, g/l 

ik, А/dm2 

Plating thickness – 3 μm 

1.1 1.3 1.6 1.8 

Pure Ni 20.7 23.2 32.6 47.1 

1.1 0.16 4.6 2.3 3.7 

1.6 0.04 1.6 4.0 8.5 

2.1 1.2 1.5 1.6 9.7 

5.2 5.7 9.3 6.3 1.2 

 
Porosity of Ni-DND-TAN (T) platings 

 

The data obtained from the current-time curves for 
a nickel electrolyte plating with different 
concentrations of DND-TNA (T) are shown in Table 7.  

 
Table 7 

 

Pore area of nickel platings with DND-TAN (T) 
 

Content  
of DND-TAN (Т) 
in electrolyte, g/l 

Pore area ik, А/dm2 
Plating thickness – 3 μm 

1.1 1.3 1.6 1.8 

– 20.7 23.2 32.6 47.1 

1.1 16.0 16.0 23.1 20.3 

2.1 26.9 19.4 18.2 7.6 

5.2 11.7 20.4 14.1 8.0 
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